
ara-server Documentation
Release 1.0.0.0a3.dev1

Red Hat

Jan 30, 2019

Contents

1 Table of Contents 3
1.1 Installing ara-server . 3
1.2 ara-server configuration . 3
1.3 Authentication and security . 10
1.4 Using API clients with ara-server . 14
1.5 Architecture and Workflows . 15

i

ii

ara-server Documentation, Release 1.0.0.0a3.dev1

Contents 1

ara-server Documentation, Release 1.0.0.0a3.dev1

2 Contents

CHAPTER 1

Table of Contents

1.1 Installing ara-server

ara-server requires a Linux distribution with python 3 in order to work.

It is recommended to use a python virtual environment in order to avoid conflicts with your Linux distribution python
packages:

Create a virtual environment
python3 -m venv ~/.ara/venv

Install ara-server from source
~/.ara/venv/bin/pip install git+https://git.openstack.org/openstack/ara-server

or install it from PyPi
~/.ara/venv/bin/pip install ara-server

1.2 ara-server configuration

ara-server ships with sane defaults, supports the notion of different environments (such as dev, staging, prod) and
allows you to customize the configuration with files, environment variables or a combination of both.

ara-server is a Django application that leverages django-rest-framework. Both Django and django-rest-framework
have extensive configuration options which are not necessarily exposed or made customizable by ARA for the sake of
simplicity.

1.2.1 Overview

This is a brief overview of the different configuration options for ara-server. For more details, click on the configuration
parameters.

3

https://docs.python.org/3/tutorial/venv.html
https://docs.djangoproject.com/en/2.1/ref/settings/
https://www.django-rest-framework.org/api-guide/settings/

ara-server Documentation, Release 1.0.0.0a3.dev1

Environment Variable Usage default
ARA_BASE_DIR Default directory for storing data and con-

figuration
~/.ara/server

ARA_SETTINGS Path to an ara-server configuration file None
ARA_ENV Environment to load configuration for default
ARA_READ_LOGIN_REQUIREDWhether authentication is required for read-

ing data
False

ARA_WRITE_LOGIN_REQUIREDWhether authentication is required for writ-
ing data

False

ARA_ENV Environment to load configuration for development
ARA_LOG_LEVEL Log level of the different components INFO
ARA_LOGGING Logging configuration See ARA_LOGGING
ARA_CORS_ORIGIN_WHITELISTdjango-cors-headers’s

CORS_ORIGIN_WHITELIST setting
["127.0.0.1:8000",
"localhost:3000"]

ARA_ALLOWED_HOSTS Django’s ALLOWED_HOSTS setting ["127.0.0.1",
"localhost", "::1"]

ARA_STATIC_ROOT Django’s STATIC_ROOT setting ~/.ara/server/www/static
ARA_DEBUG Django’s DEBUG setting false
ARA_SECRET_KEY Django’s SECRET_KEY setting Randomized token, see

ARA_SECRET_KEY
ARA_DATABASE_ENGINE Django’s ENGINE database setting django.db.backends.

sqlite3
ARA_DATABASE_NAME Django’s NAME database setting ~/.ara/server/ansible.

sqlite
ARA_DATABASE_USER Django’s USER database setting None
ARA_DATABASE_PASSWORDDjango’s PASSWORD database setting None
ARA_DATABASE_HOST Django’s HOST database setting None
ARA_DATABASE_PORT Django’s PORT database setting None

1.2.2 Configuration variables

ARA_BASE_DIR

• Environment variable: ARA_BASE_DIR

• Configuration file variable: BASE_DIR

• Type: string

• Default: ~/.ara/server

The directory where data will be stored by default.

Changing this location influences the default root directory for the ARA_STATIC_ROOT and
ARA_DATABASE_NAME parameters.

This is also used to determine the location where the default configuration file, settings.yaml, will be generated
by ara-server.

ARA_SETTINGS

• Environment variable: ARA_SETTINGS

• Configuration file variable: None, this variable defines the configuration file itself.

4 Chapter 1. Table of Contents

https://github.com/ottoyiu/django-cors-headers
https://docs.djangoproject.com/en/2.1/ref/settings/#allowed-hosts
https://docs.djangoproject.com/en/2.1/ref/settings/#std:setting-STATIC_ROOT
https://docs.djangoproject.com/en/2.1/ref/settings/#std:setting-DEBUG
https://docs.djangoproject.com/en/2.1/ref/settings/#std:setting-SECRET_KEY
https://docs.djangoproject.com/en/2.1/ref/settings/#engine
https://docs.djangoproject.com/en/2.1/ref/settings/#name
https://docs.djangoproject.com/en/2.1/ref/settings/#user
https://docs.djangoproject.com/en/2.1/ref/settings/#password
https://docs.djangoproject.com/en/2.1/ref/settings/#host
https://docs.djangoproject.com/en/2.1/ref/settings/#port

ara-server Documentation, Release 1.0.0.0a3.dev1

• Type: string

• Default: None

• Provided by: dynaconf

Location of an ara-server configuration file to load settings from. ara-server generates a default configuration file
at ~/.ara/server/settings.yaml that you can use to get started.

Note that while the configuration file is in YAML by default, it is possible to have configuration files written in ini,
json and toml as well.

Settings and configuration parsing in ara-server is provided by the dynaconf python module.

ARA_ENV

• Environment variable: ARA_ENV

• Configuration file variable: None, this variable defines which section of a configuration file is loaded.

• Type: string

• Default: development

• Provided by: dynaconf

If you are using ara-server in different environments and would like keep your configuration in a single file, you can
use this variable to select a specific environment’s settings.

For example:

Default settings are used only when not provided in the environments
default:

READ_LOGIN_REQUIRED: false
WRITE_LOGIN_REQUIRED: false
LOG_LEVEL: INFO
DEBUG: false

Increase verbosity and debugging for the default development environment
development:

LOG_LEVEL: DEBUG
DEBUG: true
SECRET_KEY: dev

Enable write authentication when using the production environment
production:

WRITE_LOGIN_REQUIRED: true
SECRET_KEY: prod

With the example above, loading the development environment would yield the following settings:

• READ_LOGIN_REQUIRED: false

• WRITE_LOGIN_REQUIRED: false

• LOG_LEVEL: DEBUG

• DEBUG: true

• SECRET_KEY: dev

Another approach to environment-specific configuration is to use ARA_SETTINGS and keep your settings in different
files such as dev.yaml or prod.yaml instead.

1.2. ara-server configuration 5

https://github.com/rochacbruno/dynaconf
https://github.com/rochacbruno/dynaconf
https://github.com/rochacbruno/dynaconf

ara-server Documentation, Release 1.0.0.0a3.dev1

Tip: If it does not exist, ara-server will generate a default configuration file at ~/.ara/server/settings.
yaml. This generated file sets up all the configuration keys in the default environment. This lets users override only
the parameters they are interested in for specific environments.

ARA_READ_LOGIN_REQUIRED

• Environment variable: ARA_READ_LOGIN_REQUIRED

• Configuration file variable: READ_LOGIN_REQUIRED

• Type: bool

• Default: False

• Provided by: django-rest-framework permissions

Determines if authentication is required before being authorized to query all API endpoints exposed by the server.

There is no concept of granularity: users either have access to query everything or they don’t.

Enabling this feature first requires setting up users.

ARA_WRITE_LOGIN_REQUIRED

• Environment variable: ARA_WRITE_LOGIN_REQUIRED

• Configuration file variable: WRITE_LOGIN_REQUIRED

• Type: bool

• Default: False

• Provided by: django-rest-framework permissions

Determines if authentication is required before being authorized to post data to all API endpoints exposed by the
server.

There is no concept of granularity: users either have access to query everything or they don’t.

Enabling this feature first requires setting up users.

ARA_LOG_LEVEL

• Environment variable: ARA_LOG_LEVEL

• Configuration file variable: LOG_LEVEL

• Type: string

• Default: INFO

Log level of the different components from ara-server.

ARA_LOG_LEVEL changes the log level of the default logging configuration provided by ARA_LOGGING.

6 Chapter 1. Table of Contents

https://www.django-rest-framework.org/api-guide/permissions
https://www.django-rest-framework.org/api-guide/permissions

ara-server Documentation, Release 1.0.0.0a3.dev1

ARA_LOGGING

• Environment variable: Not recommended, use configuration file

• Configuration file variable: LOGGING

• Type: dictionary

• Default:

LOGGING:
disable_existing_loggers: false
formatters:
normal:

format: '%(asctime)s %(levelname)s %(name)s: %(message)s'
handlers:
console:

class: logging.StreamHandler
formatter: normal
level: INFO
stream: ext://sys.stdout

loggers:
ara:

handlers:
- console
level: INFO
propagate: 0

root:
handlers:
- console
level: INFO
version: 1

The python logging configuration for ara-server.

ARA_CORS_ORIGIN_WHITELIST

• Environment variable: ARA_CORS_ORIGIN_WHITELIST

• Configuration file variable: CORS_ORIGIN_WHITELIST

• Provided by: django-cors-headers

• Type: list

• Default: ["127.0.0.1:8000", "localhost:3000"]

• Examples:

– export ARA_CORS_ORIGIN_WHITELIST="['api.ara.example.org', 'web.ara.
example.org']"

– In a YAML configuration file:

dev:
CORS_ORIGIN_WHITELIST:
- 127.0.0.1:8000
- localhost:3000

production:
CORS_ORIGIN_WHITELIST:

(continues on next page)

1.2. ara-server configuration 7

https://github.com/ottoyiu/django-cors-headers

ara-server Documentation, Release 1.0.0.0a3.dev1

(continued from previous page)

- api.ara.example.org
- web.ara.example.org

Hosts in the whitelist for Cross-Origin Resource Sharing.

This setting is typically used in order to allow the API and a web client (such as ara-web) to talk to each other.

ARA_ALLOWED_HOSTS

• Environment variable: ARA_ALLOWED_HOSTS

• Configuration file variable: ALLOWED_HOSTS

• Type: list

• Provided by: Django’s ALLOWED_HOSTS

• Default: ["127.0.0.1", "localhost", "::1"]

A list of strings representing the host/domain names that this Django site can serve.

If you are planning on hosting an instance of ara-server somewhere, you’ll need to add your domain name to this
list.

ARA_DEBUG

• Environment variable: ARA_DEBUG

• Configuration file variable: DEBUG

• Provided by: Django’s DEBUG

• Type: string

• Default: false

Whether or not Django’s debug mode should be enabled.

The Django project recommends turning this off for production use.

ARA_SECRET_KEY

• Environment variable: ARA_SECRET_KEY

• Configuration file variable: SECRET_KEY

• Provided by: Django’s SECRET_KEY

• Type: string

• Default: Randomized with django.utils.crypto.get_random_string()

A secret key for a particular Django installation. This is used to provide cryptographic signing, and should be set to a
unique, unpredictable value.

If it is not set, a random token will be generated and persisted in the default configuration file.

8 Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://github.com/openstack/ara-web
https://docs.djangoproject.com/en/2.1/ref/settings/#allowed-hosts
https://docs.djangoproject.com/en/2.1/ref/settings/#std:setting-DEBUG
https://docs.djangoproject.com/en/2.1/ref/settings/#std:setting-SECRET_KEY

ara-server Documentation, Release 1.0.0.0a3.dev1

ARA_STATIC_ROOT

• Environment variable: ARA_STATIC_ROOT

• Configuration file variable: STATIC_ROOT

• Provided by: Django’s STATIC_ROOT

• Type: string

• Default: ~/.ara/server/www/static

The absolute path to the directory where Django’s collectstatic command will collect static files for deployment.

The static files are required for the built-in API browser by django-rest-framework.

ARA_DATABASE_ENGINE

• Environment variable: ARA_DATABASE_ENGINE

• Configuration file variable: DATABASES["default"]["ENGINE"]

• Provided by: Django’s ENGINE database setting

• Type: string

• Default: django.db.backends.sqlite3

• Examples: - django.db.backends.postgresql - django.db.backends.mysql

The Django database driver to use.

When using anything other than sqlite3 default driver, make sure to set the other database settings to allow ara-server
to connect to the database.

ARA_DATABASE_NAME

• Environment variable: ARA_DATABASE_NAME

• Configuration file variable: DATABASES["default"]["NAME"]

• Provided by: Django’s NAME database setting

• Type: string

• Default: ~/.ara/server/ansible.sqlite

The name of the database.

When using sqlite, this is the absolute path to the sqlite database file. When using drivers such as MySQL or Post-
greSQL, it’s the name of the database.

ARA_DATABASE_USER

• Environment variable: ARA_DATABASE_USER

• Configuration file variable: DATABASES["default"]["USER"]

• Provided by: Django’s USER database setting

• Type: string

• Default: None

1.2. ara-server configuration 9

https://docs.djangoproject.com/en/2.1/ref/settings/#std:setting-STATIC_ROOT
https://docs.djangoproject.com/en/2.1/ref/settings/#engine
https://docs.djangoproject.com/en/2.1/ref/settings/#name
https://docs.djangoproject.com/en/2.1/ref/settings/#user

ara-server Documentation, Release 1.0.0.0a3.dev1

The username to connect to the database.

Required when using something other than sqlite.

ARA_DATABASE_PASSWORD

• Environment variable: ARA_DATABASE_PASSWORD

• Configuration file variable: DATABASES["default"]["PASSWORD"]

• Provided by: Django’s PASSWORD database setting

• Type: string

• Default: None

The password to connect to the database.

Required when using something other than sqlite.

ARA_DATABASE_HOST

• Environment variable: ARA_DATABASE_HOST

• Configuration file variable: DATABASES["default"]["HOST"]

• Provided by: Django’s HOST database setting

• Type: string

• Default: None

The host for the database server.

Required when using something other than sqlite.

ARA_DATABASE_PORT

• Environment variable: ARA_DATABASE_PORT

• Configuration file variable: DATABASES["default"]["PORT"]

• Provided by: Django’s PORT database setting

• Type: string

• Default: None

The port to use when connecting to the database server.

It is not required to set the port if you’re using default ports for MySQL or PostgreSQL.

1.3 Authentication and security

ara-server ships with a default configuration that emphasizes simplicity to let users get started quickly.

By default:

• A random SECRET_KEY will be generated once if none are supplied

• No users are created

10 Chapter 1. Table of Contents

https://docs.djangoproject.com/en/2.1/ref/settings/#password
https://docs.djangoproject.com/en/2.1/ref/settings/#host
https://docs.djangoproject.com/en/2.1/ref/settings/#port

ara-server Documentation, Release 1.0.0.0a3.dev1

• API authentication and permissions are not enabled

• ALLOWED_HOSTS and CORS_ORIGIN_WHITELIST are configured for use on localhost

These default settings can be configured according to the requirements of your deployments.

1.3.1 Setting a custom secret key

By default, ara-server randomly generates a token for the ARA_SECRET_KEY setting if none have been supplied by
the user. This value is persisted in the server configuration file in order to prevent the key from changing on every
instanciation of the server.

The default location for the server configuration file is ~/.ara/server/settings.yaml.

You can provide a custom secret key by supplying the ARA_SECRET_KEY environment variable or by specifying the
SECRET_KEY setting in your server configuration file.

1.3.2 User management

ara-server leverages Django’s user management but doesn’t create any user by default.

Note: Creating users does not enable authentication on the API. In order to make authentication required for using
the API, see Enabling authentication for read or write access.

In order to create users, you’ll need to create a superuser account before running the API server:

$ ara-manage createsuperuser --username=joe --email=joe@example.com
Password:
Password (again):
Superuser created successfully.

Tip: If you ever need to reset the password of a superuser account, this can be done with the “changepassword”
command:

$ ara-manage changepassword joe
Changing password for user 'joe'
Password:
Password (again):
Password changed successfully for user 'joe'

Once the superuser has been created, make sure the API server is started and then login to the Django web adminis-
trative interface using the credentials you just set up.

By default, you can start the API server with ara-manage runserver and access the admin interface at http:/
/127.0.0.1:8000/admin/.

Log in to the admin interface:

1.3. Authentication and security 11

https://docs.djangoproject.com/en/2.1/topics/auth/default/

ara-server Documentation, Release 1.0.0.0a3.dev1

Access the authentication and authorization configuration:

And from here, you can manage existing users or create new ones:

12 Chapter 1. Table of Contents

ara-server Documentation, Release 1.0.0.0a3.dev1

1.3.3 Enabling authentication for read or write access

Once you have created your users, you can enable authentication against the API for read (ex: GET) and write (ex:
DELETE, POST, PATCH) requests.

This is done with the two following configuration options:

• ARA_READ_LOGIN_REQUIRED for read access

• ARA_WRITE_LOGIN_REQUIRED for write access

These settings are global and are effective for all API endpoints.

1.3.4 Managing hosts allowed to serve the API

By default, ARA_ALLOWED_HOSTS authorizes localhost, ::1 and 127.0.0.1 to serve requests for the API
server.

In order to host an instance of ara-server on another domain, the domain must be part of this list or the application
server will deny any requests sent to it.

1.3.5 Managing CORS (cross-origin resource sharing)

The ARA_CORS_ORIGIN_WHITELIST default is designed to allow a local development instance of an ara-web dash-
board to communicate with a local development instance of ara-server.

The whitelist must contain the domain names where you plan on hosting instances of ara-web.

1.3. Authentication and security 13

https://github.com/openstack/ara-web

ara-server Documentation, Release 1.0.0.0a3.dev1

1.4 Using API clients with ara-server

Once you’ve installed ara-server, you need to know how you’re going to use it.

Typically, ara-server is consumed by ara-clients which currently provides two python clients for the API.

1.4.1 ARA Offline REST API client

The default client, AraOfflineClient, is meant to be used to query the API without requiring users to start or
host an instance of ara-server.

To use the offline client, first install ara-server and ara-clients, for example:

Install ara-server and ara-clients
python3 -m venv ~/.ara/venv
~/.ara/venv/bin/pip install ara-server ara-clients

Then you can use it like this:

#!/usr/bin/env python3
Import the client
from ara.clients.offline import AraOfflineClient

Instanciate the offline client
client = AraOfflineClient()

1.4.2 ARA HTTP REST API client

AraHttpClient works with the same interface, methods and behavior as AraOfflineClient. The HTTP
client does not require ara-server to be installed in order to be used but expects a functional API endpoint at a
specified location.

You can set your client to communicate with a remote ara-server API by specifying an endpoint parameter:

#!/usr/bin/env python3
Import the client
from ara.clients.http import AraHttpClient

Instanciate the HTTP client with an endpoint where ara-server is listening
client = AraHttpClient(endpoint="https://api.demo.recordsansible.org")

1.4.3 Example API usage

Note: API documentation is a work in progress.

Once you’ve instanciated your client, you’re ready to query the API.

Here’s a code example to help you get started:

14 Chapter 1. Table of Contents

https://github.com/openstack/ara-server
https://github.com/openstack/ara-clients

ara-server Documentation, Release 1.0.0.0a3.dev1

Get a list of failed playbooks
/api/v1/playbooks?status=failed
playbooks = client.get("/api/v1/playbooks", status="failed")

If there are any failed playbooks, retrieve their failed results
and provide some insight.
for playbook in playbooks["results"]:

Retrieve results for this playbook
/api/v1/results?playbook=<:id>&status=failed
results = client.get("/api/v1/results", playbook=playbook["id"], status="failed")

Iterate over failed results to get meaningful data back
for result in results["results"]:

Get the task that generated this result
/api/v1/tasks/<:id>
task = client.get(f"/api/v1/tasks/{result['task']}")

Get the file from which this task ran from
/api/v1/files/<:id>
file = client.get(f"/api/v1/files/{task['file']}")

Get the host on which this result happened
/api/v1/hosts/<:id>
host = client.get(f"/api/v1/hosts/{result['host']}")

Print something useful
print(f"Failure on {host['name']}: '{task['name']}' ({file['path']}:{task[

→˓'lineno']})")

1.5 Architecture and Workflows

1.5.1 Recording data from Ansible

0. A human (or a system, script, etc.) installs ARA and configures Ansible to use the ARA callback

1. A human (or a system, script, etc.) executes an ansible-playbook command

1.5. Architecture and Workflows 15

ara-server Documentation, Release 1.0.0.0a3.dev1

2. Ansible sends hooks for every event to callback plugins (v2_playbook_on_start,
v2_runner_on_failed, etc.)

3. The callback plugin, provided by ara-plugins, organizes the data sent by Ansible and sends it to the API client

4. The API client, provided by ara-clients, takes care of actually sending the data to the API over HTTP or locally
offline through an internal implementation

5. The API server, provided by ara-server, receives the POST from the client, validates it and sends it to the
database model backend

6. The API server sends a response back to the client with the results

7. The API client sends the response back to the callback with the results

8. The callback plugin returns, ending the callback hook

9. Ansible continues running until it is complete (back to step 2)

16 Chapter 1. Table of Contents

https://docs.ansible.com/ansible/latest/plugins/callback.html
https://github.com/openstack/ara-plugins
https://github.com/openstack/ara-clients
https://github.com/openstack/ara-server

	Table of Contents
	Installing ara-server
	ara-server configuration
	Authentication and security
	Using API clients with ara-server
	Architecture and Workflows

